This study investigates the effects of climatic variables on ozone concentration in Malaysia in order to understand the nexus between climate change and ozone concentration. The selected data was obtained from ten (10) air monitoring stations strategically mounted in urban-industrial and residential areas with significant emissions of pollutants. Correlation analysis and four machine learning algorithms (random forest, decision tree regression, linear regression, and support vector regression) were used to analyze ozone and meteorological dataset in the study area.

Categories: Ozon, Udara
Tags: Artikel Jurnal, Data Penerbitan, Sulit